博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    mysql数据库中的数据如何加密呢?mysql8.0自带新特性
    查看>>
    MySQL数据库优化
    查看>>
    MySQL数据库优化总结
    查看>>
    MySQL数据库入门看这一篇文章就够了
    查看>>
    Mysql数据库函数contac_函数:函数删除操作语法&使用例——《mysql 从入门到内卷再到入土》...
    查看>>
    mysql数据库命令备份还原
    查看>>
    mysql数据库基础教程
    查看>>
    MySQL数据库备份
    查看>>
    mysql数据库备份与恢复
    查看>>
    MySQL数据库备份实战
    查看>>
    Mysql数据库备份的问题:mysqldump: Got error: 1049: Unknown_无需整理
    查看>>
    mysql数据库如何重置密码是多少钱_MySQL数据库忘记root密码如何重置修改
    查看>>
    MySQL数据库安装配置与常用命令
    查看>>
    MySQL数据库实现主从同步数据
    查看>>
    mysql数据库导入导出_windows系统以及linux系统下的操作---linux工作笔记042
    查看>>
    mysql数据库导出导入
    查看>>
    MySQL数据库工具类之——DataTable批量加入MySQL数据库(Net版)
    查看>>
    mysql数据库常用命令
    查看>>
    MySQL数据库必会的增删查改操作(CRUD)
    查看>>
    MySQL数据库性能分析与调优实践
    查看>>