博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    mysql中出现Incorrect DECIMAL value: '0' for column '' at row -1错误解决方案
    查看>>
    mysql中出现Unit mysql.service could not be found 的解决方法
    查看>>
    mysql中出现update-alternatives: 错误: 候选项路径 /etc/mysql/mysql.cnf 不存在 dpkg: 处理软件包 mysql-server-8.0的解决方法(全)
    查看>>
    Mysql中各类锁的机制图文详细解析(全)
    查看>>
    MySQL中地理位置数据扩展geometry的使用心得
    查看>>
    Mysql中存储引擎简介、修改、查询、选择
    查看>>
    Mysql中存储过程、存储函数、自定义函数、变量、流程控制语句、光标/游标、定义条件和处理程序的使用示例
    查看>>
    mysql中实现rownum,对结果进行排序
    查看>>
    mysql中对于数据库的基本操作
    查看>>
    Mysql中常用函数的使用示例
    查看>>
    MySql中怎样使用case-when实现判断查询结果返回
    查看>>
    Mysql中怎样使用update更新某列的数据减去指定值
    查看>>
    Mysql中怎样设置指定ip远程访问连接
    查看>>
    mysql中数据表的基本操作很难嘛,由这个实验来带你从头走一遍
    查看>>
    Mysql中文乱码问题完美解决方案
    查看>>
    mysql中的 +号 和 CONCAT(str1,str2,...)
    查看>>
    Mysql中的 IFNULL 函数的详解
    查看>>
    mysql中的collate关键字是什么意思?
    查看>>
    MySql中的concat()相关函数
    查看>>
    mysql中的concat函数,concat_ws函数,concat_group函数之间的区别
    查看>>