博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    Mysql 中的日期时间字符串查询
    查看>>
    mysql 中索引的问题
    查看>>
    MySQL 中锁的面试题总结
    查看>>
    MySQL 中随机抽样:order by rand limit 的替代方案
    查看>>
    MySQL 为什么需要两阶段提交?
    查看>>
    mysql 为某个字段的值加前缀、去掉前缀
    查看>>
    mysql 主从
    查看>>
    mysql 主从 lock_mysql 主从同步权限mysql 行锁的实现
    查看>>
    mysql 主从互备份_mysql互为主从实战设置详解及自动化备份(Centos7.2)
    查看>>
    mysql 主从关系切换
    查看>>
    MYSQL 主从同步文档的大坑
    查看>>
    mysql 主键重复则覆盖_数据库主键不能重复
    查看>>
    Mysql 事务知识点与优化建议
    查看>>
    Mysql 优化 or
    查看>>
    mysql 优化器 key_mysql – 选择*和查询优化器
    查看>>
    MySQL 优化:Explain 执行计划详解
    查看>>
    Mysql 会导致锁表的语法
    查看>>
    mysql 使用sql文件恢复数据库
    查看>>
    mysql 修改默认字符集为utf8
    查看>>
    Mysql 共享锁
    查看>>