博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    Nginx下配置codeigniter框架方法
    查看>>
    Nginx之二:nginx.conf简单配置(参数详解)
    查看>>
    Nginx代理websocket配置(解决websocket异常断开连接tcp连接不断问题)
    查看>>
    Nginx代理初探
    查看>>
    nginx代理地图服务--离线部署地图服务(地图数据篇.4)
    查看>>
    Nginx代理外网映射
    查看>>
    Nginx代理模式下 log-format 获取客户端真实IP
    查看>>
    Nginx代理静态资源(gis瓦片图片)实现非固定ip的url适配网络环境映射ip下的资源请求解决方案
    查看>>
    Nginx代理静态资源(gis瓦片图片)实现非固定ip的url适配网络环境映射ip下的资源请求解决方案
    查看>>
    nginx反向代理、文件批量改名及统计ip访问量等精髓总结
    查看>>
    Nginx反向代理与正向代理配置
    查看>>
    Nginx反向代理及负载均衡实现过程部署
    查看>>
    Nginx反向代理是什么意思?如何配置Nginx反向代理?
    查看>>
    nginx反向代理解决跨域问题,使本地调试更方便
    查看>>
    Nginx反向代理配置
    查看>>
    Nginx启动SSL功能,并进行功能优化,你看这个就足够了
    查看>>
    nginx启动脚本
    查看>>
    Nginx在Windows上和Linux上(Docker启动)分别配置基本身份认证示例
    查看>>
    Nginx在Windows下载安装启动与配置前后端请求代理
    查看>>
    Nginx多域名,多证书,多服务配置,实用版
    查看>>