博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    Mysql学习总结(65)——项目实战中常用SQL实践总结
    查看>>
    Mysql学习总结(66)——设置MYSQL数据库编码为UTF-8
    查看>>
    Mysql学习总结(67)——MYSQL慢查询日志
    查看>>
    Mysql学习总结(68)——MYSQL统计每天、每周、每月、每年数据 SQL 总结
    查看>>
    Mysql学习总结(69)——Mysql EXPLAIN 命令使用总结
    查看>>
    Mysql学习总结(6)——MySql之ALTER命令用法详细解读
    查看>>
    Mysql学习总结(70)——MySQL 优化实施方案
    查看>>
    Mysql学习总结(71)——MySQL 重复记录查询与删除总结
    查看>>
    Mysql学习总结(71)——数据库介绍(MySQL安装 体系结构、基本管理)再回顾
    查看>>
    Mysql学习总结(72)——MySQL 开发者开发,设计规范再总结
    查看>>
    Mysql学习总结(73)——MySQL 查询A表存在B表不存在的数据SQL总结
    查看>>
    Mysql学习总结(74)——慢SQL!压垮团队的最后一根稻草!
    查看>>
    Mysql学习总结(75)——并发量大、数据量大的互联网业务数据库设计军规
    查看>>
    Mysql学习总结(76)——MySQL执行计划(explain)结果含义总结
    查看>>
    Mysql学习总结(77)——温故Mysql数据库开发核心原则与规范
    查看>>
    Mysql学习总结(78)——MySQL各版本差异整理
    查看>>
    Mysql学习总结(79)——MySQL常用函数总结
    查看>>
    Mysql学习总结(7)——MySql索引原理与使用大全
    查看>>
    Mysql学习总结(80)——统计数据库的总记录数和库中各个表的数据量
    查看>>
    Mysql学习总结(81)——为什么MySQL不推荐使用uuid或者雪花id作为主键?
    查看>>