博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    MySQL多表左右连接查询
    查看>>
    mysql大批量删除(修改)The total number of locks exceeds the lock table size 错误的解决办法
    查看>>
    mysql如何做到存在就更新不存就插入_MySQL 索引及优化实战(二)
    查看>>
    mysql如何删除数据表,被关联的数据表如何删除呢
    查看>>
    MySQL如何实现ACID ?
    查看>>
    mysql如何记录数据库响应时间
    查看>>
    MySQL子查询
    查看>>
    Mysql字段、索引操作
    查看>>
    mysql字段的细节(查询自定义的字段[意义-行列转置];UNION ALL;case-when)
    查看>>
    mysql字段类型不一致导致的索引失效
    查看>>
    mysql字段类型介绍
    查看>>
    mysql字段解析逗号分割_MySQL逗号分割字段的行列转换技巧
    查看>>
    MySQL字符集与排序规则
    查看>>
    MySQL字符集乱码
    查看>>
    mysql存储IP地址的数据类型
    查看>>
    mysql存储中文 但是读取乱码_mysql存储中文乱码
    查看>>
    MySQL存储引擎--MyISAM与InnoDB区别
    查看>>
    mysql存储总结
    查看>>
    mysql存储登录_php调用mysql存储过程会员登录验证实例分析
    查看>>
    MySql存储过程中limit传参
    查看>>