博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    NAS个人云存储服务器搭建
    查看>>
    NAS服务器有哪些优势
    查看>>
    NAT PAT故障排除实战指南:从原理到技巧的深度探索
    查看>>
    nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
    查看>>
    NAT-DDNS内网穿透技术,快解析DDNS的优势
    查看>>
    NAT-DDNS内网穿透技术,快解析DDNS的优势
    查看>>
    NAT-DDNS内网穿透技术,解决动态域名解析难题
    查看>>
    natapp搭建外网服务器
    查看>>
    NativePHP:使用PHP构建跨平台桌面应用的新框架
    查看>>
    nativescript(angular2)——ListView组件
    查看>>
    NativeWindow_01
    查看>>
    Native方式运行Fabric(非Docker方式)
    查看>>
    Nature | 电子学“超构器件”, 从零基础到精通,收藏这篇就够了!
    查看>>
    Nature和Science同时报道,新疆出土四千年前遗骸完成DNA测序,证实并非移民而是土著...
    查看>>
    Nature封面:只低一毫米,时间也会变慢!叶军团队首次在毫米尺度验证广义相对论...
    查看>>
    Nat、端口映射、内网穿透有什么区别?
    查看>>
    Nat、端口映射、内网穿透有什么区别?
    查看>>
    nat打洞原理和实现
    查看>>
    NAT技术
    查看>>
    NAT模式/路由模式/全路由模式 (转)
    查看>>