博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    Navicat Premium 12 卸载和注册表的删除
    查看>>
    Navicat 导入sql文件
    查看>>
    navicat 添加外键1215错误
    查看>>
    navicat 系列软件一点击菜单栏就闪退
    查看>>
    navicat 自动关闭_干掉Navicat!MySQL官方客户端到底行不行?
    查看>>
    Navicat 设置时间默认值(当前最新时间)
    查看>>
    navicat 连接远程mysql
    查看>>
    navicat:2013-Lost connection to MySQL server at ‘reading initial communication packet解决方法
    查看>>
    Navicate for mysql 数据库设计-数据库分析
    查看>>
    Navicat下载和破解以及使用
    查看>>
    Navicat中怎样将SQLServer的表复制到MySql中
    查看>>
    navicat创建连接 2002-can‘t connect to server on localhost(10061)且mysql服务已启动问题
    查看>>
    Navicat可视化界面导入SQL文件生成数据库表
    查看>>
    Navicat向sqlserver中插入数据时提示:当 IDENTITY_INSERT 设置为 OFF 时,不能向表中的标识列插入显式值
    查看>>
    Navicat因导入的sql文件中时间数据类型有参数而报错的原因(例:datetime(3))
    查看>>
    Navicat如何连接MySQL
    查看>>
    navicat导入.sql文件出错2006- MySQLserver has gone away
    查看>>
    Navicat导入海量Excel数据到数据库(简易介绍)
    查看>>
    Navicat工具Oracle数据库复制 or 备用、恢复功能(评论都在谈论需要教)
    查看>>
    Navicat工具中建立数据库索引
    查看>>