博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    MySQL分组查询
    查看>>
    Mysql分表后同结构不同名称表之间复制数据以及Update语句只更新日期加减不更改时间
    查看>>
    mySql分页Iimit优化
    查看>>
    MySQL分页查询
    查看>>
    mysql列转行函数是什么
    查看>>
    mysql创建函数报错_mysql在创建存储函数时报错
    查看>>
    mysql创建数据库和用户 并授权
    查看>>
    mysql创建数据库指定字符集
    查看>>
    MySql创建数据表
    查看>>
    MySQL创建新用户以及ERROR 1396 (HY000)问题解决
    查看>>
    MySQL创建用户报错:ERROR 1396 (HY000): Operation CREATE USER failed for 'slave'@'%'
    查看>>
    mysql加强(3)~分组(统计)查询
    查看>>
    mysql加强(4)~多表查询:笛卡尔积、消除笛卡尔积操作(等值、非等值连接),内连接(隐式连接、显示连接)、外连接、自连接
    查看>>
    mysql加强(5)~DML 增删改操作和 DQL 查询操作
    查看>>
    mysql加强(6)~子查询简单介绍、子查询分类
    查看>>
    mysql加强(7)~事务、事务并发、解决事务并发的方法
    查看>>
    mysql千万级大数据SQL查询优化
    查看>>
    MySQL千万级大表优化策略
    查看>>
    MySQL单实例或多实例启动脚本
    查看>>
    MySQL压缩包方式安装,傻瓜式教学
    查看>>