博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    mysql基础
    查看>>
    Mysql基础 —— 数据基础操作
    查看>>
    mysql基础---mysql查询机制
    查看>>
    MySQL基础5
    查看>>
    MySQL基础day07_mysql集群实例-MySQL 5.6
    查看>>
    Mysql基础命令 —— 数据库、数据表操作
    查看>>
    Mysql基础命令 —— 系统操作命令
    查看>>
    MySQL基础学习总结
    查看>>
    mysql基础教程三 —常见函数
    查看>>
    mysql基础教程二
    查看>>
    mysql基础教程四 --连接查询
    查看>>
    MySQL基础知识:创建MySQL数据库和表
    查看>>
    MySQL基础系列—SQL分类之一
    查看>>
    MySQL处理千万级数据分页查询的优化方案
    查看>>
    mysql备份
    查看>>
    mysql备份与恢复
    查看>>
    mysql备份工具xtrabackup
    查看>>
    mysql备份恢复出错_尝试备份/恢复mysql数据库时出错
    查看>>
    mysql复制内容到一张新表
    查看>>
    mysql复制表结构和数据
    查看>>