博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    Node-RED中建立TCP服务端和客户端
    查看>>
    Node-RED中建立Websocket客户端连接
    查看>>
    Node-RED中建立静态网页和动态网页内容
    查看>>
    Node-RED中解析高德地图天气api的json数据显示天气仪表盘
    查看>>
    Node-RED中连接Mysql数据库并实现增删改查的操作
    查看>>
    Node-RED中通过node-red-ui-webcam节点实现访问摄像头并截取照片预览
    查看>>
    Node-RED中配置周期性执行、指定时间阶段执行、指定时间执行事件
    查看>>
    Node-RED安装图形化节点dashboard实现订阅mqtt主题并在仪表盘中显示温度
    查看>>
    Node-RED怎样导出导入流程为json文件
    查看>>
    Node-RED订阅MQTT主题并调试数据
    查看>>
    Node-RED通过npm安装的方式对应卸载
    查看>>
    node-request模块
    查看>>
    node-static 任意文件读取漏洞复现(CVE-2023-26111)
    查看>>
    Node.js 8 中的 util.promisify的详解
    查看>>
    node.js debug在webstrom工具
    查看>>
    Node.js GET、POST 请求是怎样的?
    查看>>
    Node.js HTTP模块详解:创建服务器、响应请求与客户端请求
    查看>>
    Node.js RESTful API如何使用?
    查看>>
    node.js url模块
    查看>>
    Node.js Web 模块的各种用法和常见场景
    查看>>