博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    mysql清理undo线程_MySQL后台线程的清理工作
    查看>>
    mysql清空带外键的表
    查看>>
    MySQL清空表数据
    查看>>
    mysql源码安装
    查看>>
    Mysql源码安装过程中可能碰到的问题
    查看>>
    MySQL灵魂16问,你能撑到第几问?
    查看>>
    MySQL灵魂拷问:36题带你面试通关
    查看>>
    mysql状态分析之show global status
    查看>>
    mysql状态查看 QPS/TPS/缓存命中率查看
    查看>>
    mysql生成树形数据_mysql 实现树形的遍历
    查看>>
    mysql用于检索的关键字_Mysql全文搜索match...against的用法
    查看>>
    MySQL用得好好的,为什么要转ES?
    查看>>
    MySql用户以及权限的管理。
    查看>>
    MySQL用户权限配置:精细控制和远程访问的艺术!------文章最后有惊喜哦。
    查看>>
    mysql用户管理、常用语句、数据分备份恢复
    查看>>
    MySQL留疑问:left join时选on还是where?
    查看>>
    mysql登陆慢问题解决
    查看>>
    Mysql百万级数据查询优化
    查看>>
    MySQL的 DDL和DML和DQL的基本语法
    查看>>
    mysql的 if else , case when then, IFNULL
    查看>>