博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    MySQL 用 limit 为什么会影响性能?
    查看>>
    MySQL 用 limit 为什么会影响性能?有什么优化方案?
    查看>>
    MySQL 用户权限管理:授权、撤销、密码更新和用户删除(图文解析)
    查看>>
    mysql 用户管理和权限设置
    查看>>
    MySQL 的 varchar 水真的太深了!
    查看>>
    mysql 的GROUP_CONCAT函数的使用(group_by 如何显示分组之前的数据)
    查看>>
    MySQL 的instr函数
    查看>>
    MySQL 的mysql_secure_installation安全脚本执行过程介绍
    查看>>
    MySQL 的Rename Table语句
    查看>>
    MySQL 的全局锁、表锁和行锁
    查看>>
    mysql 的存储引擎介绍
    查看>>
    MySQL 的存储引擎有哪些?为什么常用InnoDB?
    查看>>
    mysql 索引
    查看>>
    MySQL 索引失效的 15 种场景!
    查看>>
    MySQL 索引深入解析及优化策略
    查看>>
    MySQL 索引的面试题总结
    查看>>
    mysql 索引类型以及创建
    查看>>
    MySQL 索引连环问题,你能答对几个?
    查看>>
    Mysql 索引问题集锦
    查看>>
    Mysql 纵表转换为横表
    查看>>