博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    MySql存储过程中limit传参
    查看>>
    MySQL存储过程入门
    查看>>
    mysql存储过程批量建表
    查看>>
    MySQL存储过程的使用实现数据快速插入
    查看>>
    mysql存储过程详解
    查看>>
    Mysql存表情符号发生错误
    查看>>
    MySQL学习-group by和having
    查看>>
    MySQL学习-MySQL数据库事务
    查看>>
    MySQL学习-MySQL条件查询
    查看>>
    MySQL学习-SQL语句的分类与MySQL简单查询
    查看>>
    MySQL学习-子查询及limit分页
    查看>>
    MySQL学习-排序与分组函数
    查看>>
    MySQL学习-连接查询
    查看>>
    Mysql学习总结(10)——MySql触发器使用讲解
    查看>>
    Mysql学习总结(11)——MySql存储过程与函数
    查看>>
    Mysql学习总结(12)——21分钟Mysql入门教程
    查看>>
    Mysql学习总结(13)——使用JDBC处理MySQL大数据
    查看>>
    Mysql学习总结(14)——Mysql主从复制配置
    查看>>
    Mysql学习总结(15)——Mysql错误码大全
    查看>>
    Mysql学习总结(16)——Mysql之数据库设计规范
    查看>>