博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    MySQL底层概述—6.索引原理
    查看>>
    MySQL底层概述—7.优化原则及慢查询
    查看>>
    MySQL底层概述—8.JOIN排序索引优化
    查看>>
    MySQL底层概述—9.ACID与事务
    查看>>
    Mysql建立中英文全文索引(mysql5.7以上)
    查看>>
    mysql建立索引的几大原则
    查看>>
    Mysql建表中的 “FEDERATED 引擎连接失败 - Server Name Doesn‘t Exist“ 解决方法
    查看>>
    MySQL开源工具推荐,有了它我卸了珍藏多年Nactive!
    查看>>
    MySQL异步操作在C++中的应用
    查看>>
    MySQL引擎讲解
    查看>>
    Mysql当前列的值等于上一行的值累加前一列的值
    查看>>
    MySQL当查询的时候有多个结果,但需要返回一条的情况用GROUP_CONCAT拼接
    查看>>
    MySQL必知必会(组合Where子句,Not和In操作符)
    查看>>
    MySQL必知必会总结笔记
    查看>>
    MySQL快速入门
    查看>>
    MySQL快速入门——库的操作
    查看>>
    mysql快速复制一张表的内容,并添加新内容到另一张表中
    查看>>
    mysql快速查询表的结构和注释,字段等信息
    查看>>
    mysql怎么删除临时表里的数据_MySQL中关于临时表的一些基本使用方法
    查看>>
    mysql性能优化
    查看>>