博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    mysql授权用户,创建用户名密码,授权单个数据库,授权多个数据库
    查看>>
    mysql排序查询
    查看>>
    MySQL排序的艺术:你真的懂 Order By吗?
    查看>>
    MySQL排序的艺术:你真的懂 Order By吗?
    查看>>
    Mysql推荐书籍
    查看>>
    Mysql插入数据从指定选项中随机选择、插入时间从指定范围随机生成、Navicat使用存储过程模拟插入测试数据
    查看>>
    MYSQL搜索引擎
    查看>>
    mysql操作数据表的命令_MySQL数据表操作命令
    查看>>
    mysql操作日志记录查询_如何使用SpringBoot AOP 记录操作日志、异常日志?
    查看>>
    MySQL支持的事务隔离级别,以及悲观锁和乐观锁的原理和应用场景?
    查看>>
    mysql支持表情
    查看>>
    MySQL支撑百万级流量高并发的网站部署详解
    查看>>
    MySQL改动rootpassword的多种方法
    查看>>
    mysql数据分组索引_MYSQL之索引配置方法分类
    查看>>
    mysql数据取差,mysql屏蔽主外键关联关系
    查看>>
    MySQL数据和Redis缓存一致性方案详解
    查看>>
    MySQL数据和Redis缓存一致性方案详解
    查看>>