博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    MySQL命令行登陆,远程登陆MySQL
    查看>>
    mysql命令:set sql_log_bin=on/off
    查看>>
    mySQL和Hive的区别
    查看>>
    MySQL和Java数据类型对应
    查看>>
    mysql和oorcale日期区间查询【含左右区间问题】
    查看>>
    MYSQL和ORACLE的一些操作区别
    查看>>
    mysql和redis之间互相备份
    查看>>
    MySQL和SQL入门
    查看>>
    mysql在centos下用命令批量导入报错_Variable ‘character_set_client‘ can‘t be set to the value of ‘---linux工作笔记042
    查看>>
    Mysql在Linux运行时新增配置文件提示:World-wrirable config file ‘/etc/mysql/conf.d/my.cnf‘ is ignored 权限过高导致
    查看>>
    Mysql在Windows上离线安装与配置
    查看>>
    MySQL在渗透测试中的应用
    查看>>
    Mysql在离线安装时启动失败:mysql服务无法启动,服务没有报告任何错误
    查看>>
    Mysql在离线安装时提示:error: Found option without preceding group in config file
    查看>>
    MySQL基于SSL的主从复制
    查看>>
    Mysql基本操作
    查看>>
    mysql基本操作
    查看>>
    mysql基本知识点梳理和查询优化
    查看>>
    mysql基础
    查看>>
    mysql基础---mysql查询机制
    查看>>