博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    MySql的CRUD(增、删、改、查)操作
    查看>>
    MySQL的DATE_FORMAT()函数将Date转为字符串
    查看>>
    mysql的decimal与Java的BigDecimal用法
    查看>>
    MySql的Delete、Truncate、Drop分析
    查看>>
    MySQL的Geometry数据处理之WKB方案
    查看>>
    MySQL的Geometry数据处理之WKT方案
    查看>>
    mysql的grant用法
    查看>>
    Mysql的InnoDB引擎的表锁与行锁
    查看>>
    mysql的InnoDB引擎索引为什么使用B+Tree
    查看>>
    MySQL的InnoDB默认隔离级别为 Repeatable read(可重复读)为啥能解决幻读问题?
    查看>>
    MySQL的insert-on-duplicate语句详解
    查看>>
    mysql的logrotate脚本
    查看>>
    MySQL的my.cnf文件(解决5.7.18下没有my-default.cnf)
    查看>>
    MySQL的on duplicate key update 的使用
    查看>>
    MySQL的Replace用法详解
    查看>>
    mysql的root用户无法建库的问题
    查看>>
    mysql的sql_mode参数
    查看>>
    MySQL的sql_mode模式说明及设置
    查看>>
    mysql的sql执行计划详解
    查看>>
    mysql的sql语句基本练习
    查看>>