博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    Mysql学习总结(21)——MySQL数据库常见面试题
    查看>>
    Mysql学习总结(22)——Mysql数据库中制作千万级测试表
    查看>>
    Mysql学习总结(23)——MySQL统计函数和分组查询
    查看>>
    Mysql学习总结(24)——MySQL多表查询合并结果和内连接查询
    查看>>
    Mysql学习总结(25)——MySQL外连接查询
    查看>>
    Mysql学习总结(26)——MySQL子查询
    查看>>
    Mysql学习总结(27)——Mysql数据库字符串函数
    查看>>
    Mysql学习总结(28)——MySQL建表规范与常见问题
    查看>>
    Mysql学习总结(29)——MySQL中CHAR和VARCHAR
    查看>>
    Mysql学习总结(2)——Mysql超详细Window安装教程
    查看>>
    Mysql学习总结(30)——MySQL 索引详解大全
    查看>>
    Mysql学习总结(31)——MySql使用建议,尽量避免这些问题
    查看>>
    Mysql学习总结(32)——MySQL分页技术详解
    查看>>
    Mysql学习总结(33)——阿里云centos配置MySQL主从复制
    查看>>
    Mysql学习总结(35)——Mysql两千万数据优化及迁移
    查看>>
    Mysql学习总结(36)——Mysql查询优化
    查看>>
    Mysql学习总结(37)——Mysql Limit 分页查询优化
    查看>>
    Mysql学习总结(38)——21条MySql性能优化经验
    查看>>
    Mysql学习总结(39)——49条MySql语句优化技巧
    查看>>
    Mysql学习总结(3)——MySql语句大全:创建、授权、查询、修改等
    查看>>