博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    MySQL再叙(体系结构、存储引擎、索引、SQL执行过程)
    查看>>
    MySQL函数
    查看>>
    mysql函数汇总之数学函数
    查看>>
    mysql函数汇总之日期和时间函数
    查看>>
    mysql函数汇总之条件判断函数
    查看>>
    mysql函数汇总之系统信息函数
    查看>>
    MySQL函数简介
    查看>>
    mysql函数遍历json数组
    查看>>
    MySQL函数(转发)
    查看>>
    mysql分区表
    查看>>
    MySQL分层架构与运行机制详解
    查看>>
    mysql分库分表中间件简书_MySQL分库分表
    查看>>
    MySQL分库分表会带来哪些问题?分库分表问题
    查看>>
    MySQL分组函数
    查看>>
    MySQL分组查询
    查看>>
    Mysql分表后同结构不同名称表之间复制数据以及Update语句只更新日期加减不更改时间
    查看>>
    mySql分页Iimit优化
    查看>>
    MySQL分页查询
    查看>>
    mysql列转行函数是什么
    查看>>
    mysql创建函数报错_mysql在创建存储函数时报错
    查看>>