博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    memcached高速缓存学习笔记001---memcached介绍和安装以及基本使用
    查看>>
    memcached高速缓存学习笔记003---利用JAVA程序操作memcached crud操作
    查看>>
    Memcached:Node.js 高性能缓存解决方案
    查看>>
    memcache、redis原理对比
    查看>>
    memset初始化高维数组为-1/0
    查看>>
    Metasploit CGI网关接口渗透测试实战
    查看>>
    Metasploit Web服务器渗透测试实战
    查看>>
    MFC模态对话框和非模态对话框
    查看>>
    Moment.js常见用法总结
    查看>>
    MongoDB出现Error parsing command line: unrecognised option ‘--fork‘ 的解决方法
    查看>>
    mxGraph改变图形大小重置overlay位置
    查看>>
    MongoDB可视化客户端管理工具之NoSQLbooster4mongo
    查看>>
    Mongodb学习总结(1)——常用NoSql数据库比较
    查看>>
    MongoDB学习笔记(8)--索引及优化索引
    查看>>
    mongodb定时备份数据库
    查看>>
    mppt算法详解-ChatGPT4o作答
    查看>>
    mpvue的使用(一)必要的开发环境
    查看>>
    MQ 重复消费如何解决?
    查看>>
    mqtt broker服务端
    查看>>
    MQTT 保留消息
    查看>>